Inferring Methionine Sulfoxidation and serine Phosphorylation crosstalk from Phylogenetic analyses
نویسندگان
چکیده
منابع مشابه
Inferring Epidemic Contact Structure from Phylogenetic Trees
Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network leaves a detectable genetic fingerprint in ...
متن کاملInferring protein interactions from phylogenetic distance matrices
Finding the interacting pairs of proteins between two different protein families whose members are known to interact is an important problem in molecular biology. We developed and tested an algorithm that finds optimal matches between two families of proteins by comparing their distance matrices. A distance matrix provides a measure of the sequence similarity of proteins within a family. Since ...
متن کاملInferring Phylogenetic Networks from Gene Order Data
Existing algorithms allow us to infer phylogenetic networks from sequences (DNA, protein or binary), sets of trees, and distance matrices, but there are no methods to build them using the gene order data as an input. Here we describe several methods to build split networks from the gene order data, perform simulation studies, and use our methods for analyzing and interpreting different real gen...
متن کاملPHOCOS: inferring multi-feature phenotypic crosstalk networks
MOTIVATION Quantification of cellular changes to perturbations can provide a powerful approach to infer crosstalk among molecular components in biological networks. Existing crosstalk inference methods conduct network-structure learning based on a single phenotypic feature (e.g. abundance) of a biomarker. These approaches are insufficient for analyzing perturbation data that can contain informa...
متن کاملPhylogenetic analysis of methionine synthesis genes from Thalassiosira pseudonana
Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. The sulfate assimilation and methionine synthesis pathways provide S-containing amino acids for the synthesis of proteins and a range of metabolites such as dimethyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Evolutionary Biology
سال: 2017
ISSN: 1471-2148
DOI: 10.1186/s12862-017-1017-9